Herramienta Redes Neuronales Neural Networks with java Herramienta Redes Neuronales
Herramienta Redes Neuronales Neural Networks with java
       
 

 

Menu

Introducción
a las Redes Neuronales
API del
Marco
de trabajo
Tutorial
Marco de
Trabajo
Downloads
Hompage
Marco de
trabajo

 

 


Las Redes Neuronales Multicapa

Las redes multicapa están formadas por varias capas de neuronas (2,3...). Estas redes se pueden a su vez clasificar atendiendo a la manera en que se conexionan sus capas.

Usualmente, las capas están ordenadas por el orden en que reciben la señal desde la entrada hasta la salida y están unidas en ese orden. Ese tipo de conexiones se denominan conexiones feedforward o hacia delante.


Por el contrario existen algunas redes en que las capas aparte del orden normal algunas capas están también unidas desde la salida hasta la entrada en el orden inverso en que viajan las señales de información. Las conexiones de este tipo se llaman conexiones hacia atrás, feedback o retroalimentadas.

Redes con conexiones hacia adelante:

Como decíamos antes, Este tipo de redes contienen solo conexiones entre capas hacia delante. Esto implica que una capa no puede tener conexiones a una que reciba la señal antes que ella en la dinámica de la computación.
Ejemplos de estas redes son Perceptron, Adaline, Madaline, Backpropagation y los modelos LQV y TMP de Kohonen.

 

Redes con conexiones hacia atrás:

Este tipo de redes se diferencia en las anteriores en que si pueden existir conexiones de capas hacia atrás y por tanto la información puede regresar a capas anteriores en la dinámica de la red. Este Tipo de redes suelen ser bicapas
Ejemplos de estas redes son las redes ART, Bidirectional Associative Memory (BAM) y Cognitron

Aqui, se ve una clasificación de las redes neuronales más comunes con la topología como criterio clasificador:

HAZ CLICK AQUI PARA AMPLIAR LA JERARQUIA DE REDES

 

INDICE